A Meis family protein caudalizes neural cell fates in Xenopus

نویسندگان

  • Adi Salzberg
  • Sarah Elias
  • Nira Nachaliel
  • Lilach Bonstein
  • Clara Henig
  • Dale Frank
چکیده

A homologue of the Drosophila homothorax (hth) gene, Xenopus Meis3 (XMeis3), was cloned from Xenopus laevis. XMeis3 is expressed in a single stripe of cells in the early neural plate stage. By late neurula, the gene is expressed predominantly in rhombomeres two, three and four, and in the anterior spinal cord. Ectopic expression of RNA encoding XMeis3 protein causes anterior neural truncations with a concomitant expansion of hindbrain and spinal cord. Ectopic XMeis3 expression inhibits anterior neural induction in neuralized animal cap ectoderm explants without perturbing induction of pan-neural markers. In naive animal cap ectoderm, ectopic XMeis3 expression activates transcription of the posteriorly expressed neural markers, but not pan-neural markers. These results suggest that caudalizing proteins, such as XMeis3, can alter A-P patterning in the nervous system in the absence of neural induction. Regionally expressed proteins like XMeis3 could be required to overcome anterior signals and to specify posterior cell fates along the A-P axis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.

Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transit...

متن کامل

Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus.

In order to study the mechanism of neural patterning in Xenopus, we used subtractive cloning to isolate genes activated early during this process. One gene isolated was opl, (odd-paired-like) that resembles the Drosophila pair-rule gene odd-paired and encodes a zinc finger protein that is a member of the Zic gene family. At the onset of gastrulation, opl is expressed throughout the presumptive ...

متن کامل

Essential Roles of the Meis Family Proteins During Segmentation of the Zebrafish Hindbrain : a Dissertation

Hindbrain patterning requires many factors involved in early segmentation and later segment identity of the specific domains of the hindbrain. Hox proteins and their cofactors are of great importance durng segmentation of the hindbrain, because segmentation and/or segment identity are lost when any of them are lost. Previously, we have reported that Meis proteins synergize with Pbx, another Hox...

متن کامل

Xenopus GDF6, a new antagonist of noggin and a partner of BMPs.

In Xenopus, ectodermal cell fates are determined by antagonistic interaction between the BMP subfamily of TGF-(beta) ligands and the organizer-specific secreted factors (e.g. noggin, chordin and follistatin). Inhibition of BMP function by these factors can convert cells from an epidermal to a neural cell fate. In this study, we report that GDF6, a new member of the Xenopus TGF-(beta) family, ca...

متن کامل

PTK7 modulates Wnt signaling activity via LRP6.

Protein tyrosine kinase 7 (PTK7) is a transmembrane protein expressed in the developing Xenopus neural plate. PTK7 regulates vertebrate planar cell polarity (PCP), controlling mesodermal and neural convergent-extension (CE) cell movements, neural crest migration and neural tube closure in vertebrate embryos. Besides CE phenotypes, we now show that PTK7 protein knockdown also inhibits Wnt/β-cate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1999